
Russound I/O (RIO) Protocol
for 3rd Party Integrators

Revision 1.02.00
!

Russound FMP
5 Forbes Road
Newmarket NH 03857

Document InformationDocument Information
Dated: June 7, 2011
Submitted By: Bill Edmondson

Document HistoryDocument HistoryDocument HistoryDocument History
Revision Date Author Description

1.00.00 12/11/09 bille Initial Release

1.01.00 7/6/10 bille Added support for Power Management

1.02.00 6/7/11 bille Added ability to GET most controller, zone, source and system parameters.
Added DMS-3.1 support.
Added clarification for case-sensitivity.
Corrected case in S[s].type=”Home COntrol” to ”Home Control”
Added clarification for using Media Management (one session per connection)
Updated definitions of the S[s].channel and S[s].channelName keys
Updated use of S[s].composerName

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 2

Table Of Contents

Introduction! 5

Conventions ! 6

Command Overview! 7

RIO Protocol Syntax! 8

RIO Command Response Syntax! 8

The ʻVERSIONʼ Command! 9

VERSION Examples! 9

The ʻGETʼ Command! 10

GET Examples! 18

The ʻSETʼ Command! 19

SET Examples ! 21

The ʻADJUSTʼ Command! 22

ADJUST Examples! 24

The ʻEVENTʼ Command! 25

Physical vs Logical Source Selection! 25

Key Events ! 27

EVENT Examples! 30

The ʻWATCHʼ Command! 31

WATCH Expiration! 35

WATCH Notification Messages! 35

WATCH Examples ! 40

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 3

Media Management! 41

RIO MM Commands/Responses ! 42

RIO MM Commands! 42

Initialization! 42

Menu Item Selection! 42

Item Navigation! 42

Screen Navigation! 42

Text Edit Navigation! 43

RIO MM Responses ! 44

Screen Change Notifications ! 44

Text Field Change Notifications! 46

More on the ʻkeyʼ string...! 47

Using PuTTY as a RIO Client! 48

Low Power Considerations ! 49

RIO Keepalive! 49

Waking a RIO device using Wake On LAN! 49

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 4

Introduction
This document provides a description of a new protocol intended to ease integration of 3rd party
devices and software with Russound C-Series and E-Series systems. We refer to this new feature as
Russound I/O, or RIO.

RIO is a new text-based command set that improves upon our 3rd Party Integration Support, making
it easier to develop UI devices and applications that require Russound system integration and control.
Here is a summary of the services provided by this new command set:

• Serves as a superset of the existing RNet protocol capability
• Full 2-way communication capability
• The RIO Command Set is available as ASCII text via IP (using port 9621) and RS232

interfaces. Up to 8 simultaneous IP connections is supported for C-Series and E-Series
systems.

• Adjustable RS232 baud rates (choose between 19200, 38400, 57600 and 115200) and
protocol (choose between RNet and RIO), configured via SCS-C5

• Commands for realtime configuration and monitoring of system parameters such as Volume,
Zone On/Off, Source Selection, Party Mode, DND, Source/Zone Names, Preamp Controls and
more

• Support for asynchronous notification of activity on a per-zone, per-source and per-system
basis.

• Support for Media Management (aka, 'Content Browsing and Selection'). This provides a
compressed command set, making it easy to develop a UI device capable of mimicking the
current Russound TS2 behavior. This presents (i.e. "pushes") the Menu choices and Media
Lists from the C-Series and E-Series system to the 3rd party UI via a small set of RIO 'MM'
events.

• Support for submitting multiple commands in a single request (with multiple results in a single
response)

• Support for low-power management
• Easy-to-understand error responses for illegal or malformed commands
• Full documentation of the RIO protocol

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 5

Conventions

This section describes conventions used throughout this document. Note that these document
conventions are used for clarification only. The RIO Protocol is entirely case-insensitive. To be more
specific, the case of incoming commands are ignored. Outgoing responses are formatted exactly as
they appear in this document, regardless of the case of the incoming command.

1. RIO commands are specified in all uppercase. For example,

GET C[1].Z[4].currentSource

In this case, ʻGETʼ is a RIO command.

2. Text enclosed in ʻ< >ʼ provides a short description of variable text data that is part of the RIO
message. For example,

S VERSION=“<version #>”

In this case, ʻversion #ʼ is a short description that is replaced with the actual RIO version number at
runtime.

3. “<key>” refers to the RIO command key string. The key syntax is described in detail in the “More
on the ʻkeyʼ string...” section at the end of this document.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 6

Command Overview
RIO defines a small set of commands, providing access to many of the capabilities of the Russound
System. These commands are presented here in general terms, along with a description of the
relevant parameters. All commands are available via serial and IP.

VERSION - request the version of the supported RIO protocol

GET - return the value of one or more system parameters

SET - modify the value of one or more system parameters

ADJUST - modify the relative value of one or more system parameters

EVENT - send an event from a zone

WATCH - register to receive asynchronous messages from a particular zone, source or system

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 7

RIO Protocol Syntax
This section presents each RIO Command and Response in detail.

The specifics of the RIO protocol are:

RIO commands are case-insensitive.

RIO commands are made up of ASCII characters except for the terminating characters.

All RIO commands must be terminated with a <CR> (0x0D hex)

All RIO responses are terminated with a <CR><LF> (0x0D 0x0A hex)

RIO Command Response Syntax

For RIO commands that are processed successfully, a response is sent with this format:

! S <optional data>

For RIO commands that result in failure, a response is sent with this format:

! E <error message>
! ! ! !
For asyncronous RIO responses, or ʻnotificationsʼ, a response is sent with this format:

! N <key>=”<value>”
! ! ! !

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 8

The ʻVERSIONʼ Command

The VERSION command is used to request the version of the RIO protocol running on the RIO server
device.

VERSION Command Syntax:

! VERSION

VERSION Response:

! S VERSION=“<version #>”

VERSION Examples

1) Request the RIO Protocol version from an MCA-C5 controller

VERSION Command:

! VERSION

VERSION Response:

! S VERSION= “01.00.00”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 9

The ʻGETʼ Command

The GET command returns the value of one or more system parameters. This command is performed
synchronously, returning the current value once upon request. A system parameter is addressed by a
ʻkeyʼ string. For more details on the ʻkeyʼ string, see the section at the end of this document.

To request a single system parameter,

GET Command Syntax:

! GET <key>

Successful Response:

! S <key>=”<value>”

To request multiple system parameters,

GET Command Syntax:

! GET <key1>, <key2> ..., <keyN>

Successful Response:

! S <key1>=”<value1>”, <key2>=”<value2>”, ..., <keyN>=”<valueN>”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 10

The tables below provide a complete list of the ʻkeyʼ strings supported by the GET command.

Controller GET Key Table

Controller table indices are identified by ʻcʼ, a number from 1 to 6.

Controller GET Key Table

Controller table indices are identified by ʻcʼ, a number from 1 to 6.

Controller GET Key Table

Controller table indices are identified by ʻcʼ, a number from 1 to 6.

Key Description Range

C[c].ipAddress IP Address for the controller a valid IP Address
(xxx.xxx.xxx.xxx)

C[c].macAddress MAC Address for the controller a valid MAC Address
(xx:xx:xx:xx:xx:xx)

System GET Key TableSystem GET Key TableSystem GET Key Table

Key Description Range

System.status OFF/ON/STANDBY

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 11

Zone GET Key Table

Controller table indices are identified by ʻcʼ, a number from 1 to 6.
Zone table indices are identified by ʻzʼ, a number from 1 to 8.

Zone GET Key Table

Controller table indices are identified by ʻcʼ, a number from 1 to 6.
Zone table indices are identified by ʻzʼ, a number from 1 to 8.

Zone GET Key Table

Controller table indices are identified by ʻcʼ, a number from 1 to 6.
Zone table indices are identified by ʻzʼ, a number from 1 to 8.

Key Description Range

C[c].Z[z].name Name of the specified zone 12 char max

C[c].Z[z].currentSource Current physical Source selection for the
zone

MCA-C5: 1 to 8C[c].Z[z].currentSource Current physical Source selection for the
zone

ACA-E5: 1 to 12

C[c].Z[z].volume Volume setting for the zone 0 to 50

C[c].Z[z].bass Bass setting for the zone -10 to 10

C[c].Z[z].treble Treble setting for the zone -10 to 10

C[c].Z[z].balance Balance setting for the zone -10 to 10

Note: For the ʻbalanceʼ parameter, a value of ʻ-10ʼ represents the
leftmost position in the stereo spectrum, 0 represents the center and
ʼ10ʼ represents the rightmost position.

Note: For the ʻbalanceʼ parameter, a value of ʻ-10ʼ represents the
leftmost position in the stereo spectrum, 0 represents the center and
ʼ10ʼ represents the rightmost position.

C[c].Z[z].loudness Loudness setting for the zone OFF/ON

C[c].Z[z].turnOnVolume Turn On Volume setting for the zone 0 to 50

C[c].Z[z].doNotDisturb Do Not Disturb setting for the zone OFF/ON/SLAVE

C[c].Z[z].partyMode Party Mode setting for the zone OFF/ON/MASTER

C[c].Z[z].status OFF/ON

C[c].Z[z].mute OFF/ON

C[c].Z[z].sharedSource OFF/ON

C[c].Z[z].lastError 12 char max

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 12

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

KeyKey Description Range

S[s].nameS[s].name Name of the specified source 12 char max

S[s].typeS[s].type Type of the specified source. Amplifier
Television
Cable
Video Acc
Satellite
VCR
Laser Disc
DVD
Tuner / Amplifier
Misc Audio
CD
Home Control
5 Disc CD Changer
6 Disc CD Changer
CD Changer
DVD Changer
RNET AM/FM Tuner (Internal)
RNET XM Tuner (Internal)
RNET Sirius Tuner (Internal)
RNET AM/FM Tuner (External)
RNET XM Tuner (External)
RNET Sirius Tuner (External)
RNET SMS3
RNET iBridge Dock
RNET iBridge Bay
Arcam T32
DMS-3.1 Media Streamer
DMS-3.1 AM/FM Tuner

An unconfigured source will return an empty string as itʼs type value.
For example, if Source 4 has not been configured for use,

sending:
 GET S[4].type

will produce this response:
 S S[4].type=""

An unconfigured source will return an empty string as itʼs type value.
For example, if Source 4 has not been configured for use,

sending:
 GET S[4].type

will produce this response:
 S S[4].type=""

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 13

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

KeyKey Description Range

S[s].composerNameS[s].composerName Composer of the now playing
content on the specified source.

37 char max

The ʻcomposerNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)

The ʻcomposerNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)

The ʻcomposerNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)

S[s].channelS[s].channel Channel (frequency) of the now
playing content on the specified
source.

37 char max

The ʻchannelʻ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• RNET AM/FM Tuner (External)
• DMS-3.1 AM/FM Tuner

The ʻchannelʻ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• RNET AM/FM Tuner (External)
• DMS-3.1 AM/FM Tuner

The ʻchannelʻ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• RNET AM/FM Tuner (External)
• DMS-3.1 AM/FM Tuner

S[s].coverArtURLS[s].coverArtURL Cover Art URL for the now playing
content on the specified source.

255 char max

The ʻcoverArtURLʼ key is valid for these source types:
• DMS-3.1 Media Streamer (SiriusXM and Internet Radio only)
The ʻcoverArtURLʼ key is valid for these source types:
• DMS-3.1 Media Streamer (SiriusXM and Internet Radio only)
The ʻcoverArtURLʼ key is valid for these source types:
• DMS-3.1 Media Streamer (SiriusXM and Internet Radio only)

S[s].channelNameS[s].channelName Channel name of the now playing
content on the specified source.

37 char max

The ʻchannelNameʻ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• Arcam T32
• DMS-3.1 Media Streamer

The ʻchannelNameʻ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• Arcam T32
• DMS-3.1 Media Streamer

The ʻchannelNameʻ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• Arcam T32
• DMS-3.1 Media Streamer

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 14

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

KeyKey Description Range

S[s].genreS[s].genre Genre of the now playing content
on the specified source.

37 char max

The ʻgenreʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• Arcam T32

The ʻgenreʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• Arcam T32

The ʻgenreʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• Arcam T32

S[s].artistNameS[s].artistName Artist of the now playing content on
the specified source.

37 char max

The ʻartistNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻartistNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻartistNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

S[s].albumNameS[s].albumName Album for the now playing content
on the specified source.

37 char max

The ʻalbumNameʻ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻalbumNameʻ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻalbumNameʻ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 15

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

KeyKey Description Range

S[s].playlistNameS[s].playlistName Playlist for the now playing content
on the specified source.

37 char max

The ʻplaylistNameʻ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻplaylistNameʻ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻplaylistNameʻ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

S[s].songNameS[s].songName Song for the now playing content
on the specified source.

37 char max

The ʻsongNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻsongNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

The ʻsongNameʼ key is valid for these source types:
• RNET Sirius Tuner (Internal)
• RNET Sirius Tuner (External)
• RNET XM Tuner (Internal)
• RNET XM Tuner (External)
• RNET iBridge Dock
• RNET iBridge Bay
• RNET SMS3
• DMS-3.1 Media Streamer

S[s].programServiceNameS[s].programServiceName Program Service Name (PSN) of
the now playing content on the
specified source.

37 char max

The ʻprogramServiceNameʼ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• DMS-3.1 AM/FM Tuner

The ʻprogramServiceNameʼ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• DMS-3.1 AM/FM Tuner

The ʻprogramServiceNameʼ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• DMS-3.1 AM/FM Tuner

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 16

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

Source GET Key Table

Source table indices are identified by ʻsʼ, a number from 1 to 12.

KeyKey Description Range

S[s].radioTextS[s].radioText First line of radio text for the now
playing content on the specified
source.

37 char max

The ʻradioTextʼ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• DMS-3.1 AM/FM Tuner
• Arcam T32

The ʻradioTextʼ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• DMS-3.1 AM/FM Tuner
• Arcam T32

The ʻradioTextʼ key is valid for these source types:
• RNET AM/FM Tuner (Internal)
• DMS-3.1 AM/FM Tuner
• Arcam T32

S[s].radioText2
S[s].radioText3
S[s].radioText4

S[s].radioText2
S[s].radioText3
S[s].radioText4

Second, third and fourth line of
radio text for the now playing
content on the specified source.

37 char max

The ʻradioText2/3/4ʼ keys are valid for these source types:
• Arcam T32
The ʻradioText2/3/4ʼ keys are valid for these source types:
• Arcam T32
The ʻradioText2/3/4ʼ keys are valid for these source types:
• Arcam T32

S[s].shuffleModeS[s].shuffleMode Shuffle mode for the now playing
content on the specified source.

OFF/SONG/ALBUM

The ʻshuffleModeʼ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay

The ʻshuffleModeʼ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay

The ʻshuffleModeʼ key is valid for these source types:
• RNET iBridge Dock
• RNET iBridge Bay

S[s].modeS[s].mode Provider mode or streaming
service for the now playing content
on the specified source.

Unknown
USB
Media Server
Pandora
SiriusXM
Internet Radio
Rhapsody
Last.fm
AirPlay

The ʻmodeʼ key is valid for these source types:
• DMS-3.1 Media Streamer
The ʻmodeʼ key is valid for these source types:
• DMS-3.1 Media Streamer
The ʻmodeʼ key is valid for these source types:
• DMS-3.1 Media Streamer

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 17

GET Examples

1) Get the value for the current source of controller 1, zone 4:

GET Command:

! GET C[1].Z[4].currentSource

GET Response:

! S C[1].Z[4].currentSource=”1”

2) Get the values for the bass and treble of controller 1, zone 4:

GET Command:

! GET C[1].Z[4].bass, C[1].Z[4].treble

GET Response:

! S C[1].Z[4].bass=”6”, C[1].Z[4].treble=”5”

3) Get the IP Address of controller 1:

GET Command:

! GET C[1].ipAddress

GET Response:

! S C[1].ipAddress=”192.168.1.10”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 18

The ʻSETʼ Command

The SET command changes one or more system parameters. A system parameter is addressed by a
ʻkeyʼ string. For more details on the ʻkeyʼ string, see the section at the end of this document.

SET operations are not subject to the current state of the system. They may be utilized at any time,
provided the controller/zone is present in the system.

To modify a single system parameter,

SET Command Syntax:

! SET <key>=”<value>”

Successful Response:

! S <key>=”<value>”

To modify multiple system parameters,

SET Command Syntax:

! SET <key1>=”<value1>”, <key2>=”<value2>”, ..., <keyN>=”<valueN>”

Successful Response:

! S <key1>=”<value1>”, <key2>=”<value2>”, ..., <keyN>=”<valueN>”

! A successful response returns the modified value.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 19

The table below provides a complete list of the ʻkeyʼ strings supported by the SET command.

Controller tables indices are identified by ʻcʼ, a number from 1 to 6.
Zone tables indices are identified by ʻzʼ, a number from 1 to 8.

Key Description Data Range

C[c].Z[z].bass Bass setting for the zone -10 to 10

C[c].Z[z].treble Treble setting for the zone -10 to 10

C[c].Z[z].balance Balance setting for the zone -10 to 10

C[c].Z[z].loudness Loudness setting for the zone OFF/ON

C[c].Z[z].turnOnVolume Turn On Volume setting for the zone 0 to 50

Note that for the ʻbalanceʼ parameter, a value of ʻ-10ʼ represents the leftmost position in the stereo
spectrum, 0 represents the center and ʼ10ʼ represents the rightmost position.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 20

SET Examples

1) Set the value for the Turn On Volume of controller 1, zone 4:

SET Command:

! SET C[1].Z[4].turnOnVolume=”25”

SET Response:

! S C[1].Z[4].turnOnVolume=”25”

2) Set the values for the bass and treble of controller 1, zone 4:

SET Command:

! SET C[1].Z[4].bass=”10”, C[1].Z[4].treble=”8”

SET Response:

! S C[1].Z[4].bass=”10”, C[1].Z[4].treble=”8”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 21

The ʻADJUSTʼ Command

The ADJUST command increments or decrements the current value of one or more system
parameters by one. A system parameter is addressed by a ʻkeyʼ string. For more details on the ʻkeyʼ
string, see the section at the end of this document.

The ADJUST command is useful in implementing controls that are intended to make adjustments to a
system parameter relative to their current value.

To modify a single system parameter,

ADJUST Command Syntax:

! ADJUST <key>=”+1”
! ADJUST <key>=”-1”

Successful Response:

! S <key>=”<value>”

! A successful response returns the modified value.

To modify multiple system parameters,

ADJUST Command Syntax:

! ADJUST <key1>=”<value1>”, <key2>=”+/-<value2>”, ..., <keyN>=”+/-<value3>”

! where <valueN> is +1 or -1

Successful Response:

! S <key1>=”<value1>”, <key2>=”<value2>”, ..., <keyN>=”<valueN>”

! where <valueN> is the adjusted value of the parameter

! A successful response returns the modified value.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 22

The table below provides a complete list of the ʻkeyʼ strings supported by the ADJUST command. It
also specifies the allowable adjustment range for each.

Adjustments that result in out-of-range data values will not result in an error. However, the value of
the parameter, after executing the ADJUST command, are governed not to exceed the allowable
parameter range. These allowable parameter ranges are specified as ʻData Rangeʼ in the table
below.

Controller tables indices are identified by ʻcʼ, a number from 1 to 6.
Zone tables indices are identified by ʻzʼ, a number from 1 to 8.

Key Description Data Range

C[c].Z[z].bass Bass setting for the zone -10 to +10

C[c].Z[z].treble Treble setting for the zone -10 to +10

C[c].Z[z].balance Balance setting for the zone -10 to +10

C[c].Z[z].turnOnVolume Turn On Volume setting for the zone 0 to 50

Note that for the ʻbalanceʼ parameter, a value of ʻ-10ʼ represents the leftmost position in the stereo
spectrum, 0 represents the center and ʼ10ʼ represents the rightmost position.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 23

ADJUST Examples

1) Increase the value for the turn on volume of controller 1, zone 4, currently set to a value of ʼ20ʼ:

ADJUST Command:

! ADJUST C[1].Z[4].turnOnVolume=”+1”

ADJUST Response:

! S C[1].Z[4].turnOnVolume=”21”

2) For controller 1, zone 1, simultaneously increase the value of the bass, currently set to a value of
ʻ1ʼ and lower the value of the treble, currently set to a value of ʻ-2ʼ:

ADJUST Command:

! ADJUST C[1].Z[4].bass=”+1”, C[1].Z[4].treble=”-1”

ADJUST Response:

! S C[1].Z[4].bass=”2”, C[1].Z[4].treble=”-3”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 24

The ʻEVENTʼ Command

The EVENT command is typically used to issue commands that are triggered by user actions (i.e.,
button presses, screen selections, etc). These commands may change system parameter values
(such as zone volume adjustments). Unlike the SET and ADJUST commands, the EVENT commands
may also affect system state (such as zone on/off status, party mode state, ...), depending on current
conditions.

Due to their stateful behavior, executing the same EVENT command can provide different resultant
values. For example, setting a controller/zone Party Mode to ʻONʼ, when no Party is ongoing, will
result in setting that controller/zone to Party Mode ʻMASTERʼ status, since Party Mode requires at
least one Master controller/zone.

Events are directed at a controller/zone pair and specified by an Event ID and one or two event-
specific data values.

EVENT Command Syntax:

! EVENT C[c].Z[z]!<event id> <data1> <data2>

Successful Response:

! S

Physical vs Logical Source Selection

Source selection can be performed in two ways; physically and logically.

A physical source selection treats the supplied source number in terms of the source inputs as they
appear on the rear panel of the System Controller.

Physical source selection is accessed using this syntax:

EVENT C[c].Z[z]!SelectSource <physical source number>

A logical source selection ignores the ʻexcludedʼ and ʻunconfiguredʼ sources. That is, the available
sources (on a per-zone basis) are numbered from 1 to N, where N is the total number of available
sources. Note that the Russound System Remote Control refers to the sources as ʻlogicalʼ sources.

Logical source selection is accessed using this syntax:

EVENT C[c].Z[z]!KeyRelease SelectSource <logical source number>

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 25

The table below provides a complete list of the idʼs supported by the EVENT command.

Description Event ID Data 1
Range

Data 2
Range

Select a physical source SelectSource MCA-C5: 1 to 8
ACA-E5: 1 to 12

N/A

Turn a zone on ZoneOn N/A N/A

Turn a zone off ZoneOff N/A N/A

Turn all zones on AllOn N/A N/A

Turn all zones off AllOff N/A N/A

Send a Key Press KeyPress <key code> N/A
(except Volume)

Send a Key Release KeyRelease <key code> N/A
(except Source Select)

Send a Key Hold KeyHold <key code> hold time (in msec)

Change Party Mode PartyMode off/on/master N/A

Change DND DoNotDisturb off/on N/A

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 26

Key Events

Key Events are intended to emulate all of the buttons available on the Russound System Remote
Control. They provide the Press/Release/Hold conditions, where applicable. The following tables list
the EVENT Key Codes for each of these conditions.

This table lists the key codes that are supported by the KeyPress EVENT.

RIO Key Codes

Volume (0 to 50)

VolumeUp

VolumeDown

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 27

This table lists the key codes that are supported by the KeyRelease EVENT. Entries identified with a
ʻ*ʼ are configurable via the SCS command editor (applicable to non-RNET sources only).

RIO Key CodesRIO Key Codes

DigitZero Enter

DigitOne Last

DigitTwo Sleep

DigitThree Guide

DigitFour Exit

DigitFive MenuLeft

DigitSix MenuRight

DigitSeven MenuUp

DigitEight MenuDown

DigitNine Select

*Previous Info

*Next Menu

*ChannelUp Record

*ChannelDown PageUp

NextSource PageDown

Power Disc

*Stop Mute

*Pause

Favorite1

Favorite2

*Play

SelectSource
(1 to 12, logical)

This table lists the key codes that are supported by the KeyHold EVENT.

KeyHold events must be accompanied by a ʻhold timeʼ parameter. The hold time is specified in
milliseconds.

In order for the KeyHold EVENTs to operate correctly, they must be executed in a specific manner by
the 3rd party device (the RIO ʻclientʼ). The KeyHold EVENT message must be transmitted once every
150 milliseconds for as long as the button is held. The ʻhold timeʼ parameter should be increased by
150 each time it is retransmitted. When the button is released, a KeyRelease EVENT command must
be sent to complete the hold operation. See EVENT Example #2 for more details.

Entries identified with a ʻ*ʼ are configurable via the SCS command editor (applicable to non-RNET
sources only).

RIO Key CodesRIO Key CodesRIO Key Codes

DigitZero *Stop Select

DigitOne *Pause Info

DigitTwo Favorite1 Menu

DigitThree Favorite2 Record

DigitFour *Play PageUp

DigitFive Mute PageDown

DigitSix Enter Disc

DigitSeven Last

DigitEight Sleep

DigitNine Guide

*Previous Exit

*Next MenuLeft

*ChannelUp MenuRight

*ChannelDown MenuUp

Power MenuDown

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 29

EVENT Examples

1) Increase the volume of controller 1, zone 4:

EVENT Command:

! EVENT C[1].Z[4]!KeyPress VolumeUp

EVENT Response:

! S

2) Perform a Search Forward for approximately 1 second on an iPod for controller 1, zone 4:

EVENT Commands:

! ! <user presses key>
! ! <150msec time delay>
! EVENT C[1].Z[4]!KeyHold Next 150
! ! <150msec time delay>
! EVENT C[1].Z[4]!KeyHold Next 300
! ! <150msec time delay>
! EVENT C[1].Z[4]!KeyHold Next 450
! ! <150msec time delay>
! EVENT C[1].Z[4]!KeyHold Next 600
! ! <150msec time delay>
! EVENT C[1].Z[4]!KeyHold Next 750
! ! <150msec time delay>
! EVENT C[1].Z[4]!KeyHold Next 900
! ! <150msec time delay>
! EVENT C[1].Z[4]!KeyHold Next 1050
! ! <user releases key>
! EVENT C[1].Z[4]!KeyRelease Next

EVENT Response:

! S <for each EVENT received>

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 30

The ʻWATCHʼ Command

The WATCH command enables a device to register for and receive asynchronous notifications of
system parameter changes. The WATCH command groups the system parameters into categories:
ZONE, SOURCE and SYSTEM.

The WATCH command is an excellent way for a UI device to remain aware of system status, allow
the device to display current information with minimal communication or overhead. Each notification
message is uniquely identified with a key string. This allows the UI device a way to identify relevant
data, while filtering unneeded data. These UI device decisions are sometimes made on a screen-by-
screen basis, or a stateful manner.

When the command is issued with the parameter set to ʻONʼ, it will provide a snapshot of the system
parameters in the requested category. Subsequent changes will be sent to the requesting device as
their values change. These asynchronous change notifications will continue until the WATCH
command is turned ʻOFFʼ by the user or when the WATCH command expires (when the EXPIRESIN
option is specified).

The WATCH command allows the user to specify a WATCH ʻdurationʼ. This value denotes the number
of minutes that a particular WATCH operation will remain in effect. The RIO Server will indicate when
a WATCH is about to expire with an ʻEXPIRINGʼ notification. It will also indicate the expiration
condition with an ʻEXPIREDʼ notification.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 31

WATCH Command Syntax:

Start a Zone WATCH session

! WATCH C[c].Z[z] ON

Start a Source WATCH session

! WATCH S[s] ON

Start a System WATCH session

! WATCH System ON

Successful Response:

! S

! N <key1>=”<value1>”
! N <key2>=”<value2>”
! ...
! N <keyN>=”<valueN>”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 32

WATCH Command Syntax (continued):

Start a Zone WATCH session with an expiration time

! WATCH C[c].Z[z] ON EXPIRESIN <time in minutes>

Start a Source WATCH session with an expiration time

! WATCH S[s] ON EXPIRESIN <time in minutes>

Start a System WATCH session with an expiration time

! WATCH System ON EXPIRESIN <time in minutes>

Successful Response:

! S

! N <key1>=”<value1>”
! N <key2>=”<value2>”
! ...
! N <keyN>=”<valueN>”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 33

WATCH Command Syntax (continued):

Stop a Zone WATCH session

! WATCH C[c].Z[z] OFF

Stop a Source WATCH session

! WATCH S[s] OFF

Stop a System WATCH session

! WATCH System OFF

Successful Response:

! S

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 34

WATCH Expiration

The WATCH command allows the 3rd party device to expire itʼs ʻONʼ condition after a specified
number of minutes. The number of minutes to expire the WATCH command for a particular category
(and itʼs instance) is specified using the optional ʻEXPIRESINʼ argument.

The 3rd party will receive a notification within 1 minute of impending expiration and another
notification upon expiration.

The notifications are:

N EXPIRING=<watch type>
N EXPIRED=<watch type>

WATCH Notification Messages

The type of notification messages that result from enabling WATCH vary based on the WATCH
parameter and current source type. The following sections list the notifications in these various
scenarios.

WATCH System

Notifications:

N System.status=”<value>”

For status, possible values are OFF, ON and STANDBY.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 35

WATCH a Zone

Notifications:

N C[c].Z[z].name=”<value>”
N C[c].Z[z].status=”<value>”
N C[c].Z[z].currentSource=”<value>”
N C[c].Z[z].volume=”<value>”
N C[c].Z[z].bass=”<value>”
N C[c].Z[z].treble=”<value>”
N C[c].Z[z].balance=”<value>”
N C[c].Z[z].loudness=”<value>”
N C[c].Z[z].doNotDisturb=”<value>”
N C[c].Z[z].partyMode=”<value>”
N C[c].Z[z].turnOnVolume=”<value>”
N C[c].Z[z].mute=”<value>”
N C[c].Z[z].sharedSource=”<value>”
N C[c].Z[z].lastError=”<value>”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 36

WATCH a Source

For all source types

Notifications:

N S[s].type=”<value>”

where value is one of these possible source types

• Amplifier
• Television
• Cable
• Video Acc
• Satellite
• VCR
• Laser Disc
• DVD
• Tuner / Amplifier
• Misc Audio
• CD
• Home Control
• 5 Disc CD Changer
• 6 Disc CD Changer
• CD Changer
• DVD Changer
• RNET AM/FM Tuner (Internal)
• RNET XM Tuner (Internal)
• RNET Sirius Tuner (Internal)
• RNET AM/FM Tuner (External)
• RNET XM Tuner (External)
• RNET Sirius Tuner (External)
• RNET SMS3
• RNET iBridge Dock
• RNET iBridge Bay
• Arcam T32
• DMS-3.1 Media Streamer
• DMS-3.1 AM/FM Tuner

N S[s].name=”<value>”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 37

WATCH a Source (continued)

For Sirius Satellite Radio Sources

N S[s].composerName=”<value>”
N S[s].channelName=”<value>”
N S[s].genre=”<value>”
N S[s].artistName=”<value>”
N S[s].songName=”<value>”

For XM Satellite Radio Sources

N S[s].channelName=”<value>”
N S[s].genre=”<value>”
N S[s].artistName=”<value>”
N S[s].songName=”<value>”

For AM/FM Tuner Sources

N S[s].channel=”<value>”

For AM/FM Tuner Sources with RDS

N S[s].programServiceName=”<value>”
N S[s].radioText=”<value>”
N S[s].channel=”<value>”

For DAB Tuner Source

N S[s].channelName=”<value>”
N S[s].genre=”<value>”
N S[s].radioText=”<value>”
N S[s].radioText2=”<value>”
N S[s].radioText3=”<value>”
N S[s].radioText4=”<value>”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 38

WATCH a Source (continued)

For iBridgeDock and iBridgeBay Media Players

N S[s].artistName=”<value>”
N S[s].albumName=”<value>”
N S[s].playlistName=”<value>”
N S[s].songName=”<value>”
N S[s].shuffleMode=”<value>”

For shuffleMode, possible values are ʻOFF, SONG and ALBUMʼ.

For SMS3 Media Players

N S[s].artistName=”<value>”
N S[s].albumName=”<value>”
N S[s].playlistName=”<value>”
N S[s].songName=”<value>”

For DMS-3.1 Media Streamers

N S[s].artistName=”<value>”
N S[s].albumName=”<value>”
N S[s].playlistName=”<value>”
N S[s].songName=”<value>”
N S[s].mode=”<value>”
N S[s].channelName=”<value>”
N S[s].coverArtURL=”<value>”

WATCH Examples

1) WATCH for asynchronous changes on Controller 1, Zone 4:

WATCH Command:

! WATCH C[1].Z[4] ON

WATCH Response:

! S

! N C[1].Z[4].status=”ON”
! N C[1].Z[4].volume=”20”
! N C[1].Z[4].bass=”10”
! N C[1].Z[4].treble=”10”
! N C[1].Z[4].balance=”10”
! N C[1].Z[4].loudness=”OFF”
! N C[1].Z[4].currentSource=”2”
! N S[2].artist=”The Beatles”
! N S[2].album=”Abbey Road”
! N S[2].song=”Come Together”

WATCH related notifications:

A song begins to play on the Zone 4 current source...

! N S[2].artist=”ABBA”
! N S[2].album=”Arrival”
! N S[2].song=”Dancing Queen”

Volume is adjusted on Zone 4...

! N C[1].Z[4].volume=”21”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 40

Media Management
RIO includes a set of commands specifically for Media Management. This allows for content filtering,
browsing and selection. These commands provide access to media contained on all RNET Media
Player source devices.

RIO supports a Media Management model that allows a simple implementation to mimic the existing
navigation model used on the popular Russound UNO-TS2 touchscreen keypad. By implementing
about 20 screen templates, each containing a small set of fixed buttons and static text fields, it is
possible to provide full Media Management of all RNET Media Players.

These screen templates are presented in the Russound MediaManagement Protocol PDF document
and can be found along with this document in the Third Party Development Toolkit. For more
information on these text fields messages, see the Screen Change Notifications section.

RIO allows for one Media Management session per connection. An RS232 interface is treated as a
single connection. Each IP socket is treated as a single connection.

Russound Media Management is only supported by RNET Source Devices that are considered
ʻMedia Playersʼ. As of this writing, this includes:

• iBridge Bay
• iBridge Dock
• SMS3
• DMS-3.1 Media Streamer

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 41

RIO MM Commands/Responses

This section presents the RIO commands and responses used to access Media Management
functionality.

RIO MM Commands

Initialization

This event resets MM state within the source device.

EVENT C[c].Z[z]!MMInit

Menu Item Selection

This EVENT is used to select from a list of items presented by the previous set of text field
notifications (see Text Field Change Notifications below). There are up to six valid selctions,
depending on the current screen being displayed.

EVENT C[c].Z[z]!MMSelectItem [1-6]

Item Navigation

These EVENTs are used to request the next and previous set of items from the current list.

EVENT C[c].Z[z]!MMNextItems

EVENT C[c].Z[z]!MMPrevItems

Screen Navigation

This EVENT requests that the previous screen be selected. This may result in the system sending a
screen change notification (see Screen Change Notifications below) as well as text field change
notifications (see Text Field Change Notifications below).

EVENT C[c].Z[z]!MMPrevScreen

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 42

Text Edit Navigation

These EVENTs allow editing of alphanumeric fields, where the text search feature is available.

EVENT C[c].Z[z]!MMCursorNext

EVENT C[c].Z[z]!MMCursorPrev

EVENT C[c].Z[z]!MMLetterUp

EVENT C[c].Z[z]!MMLetterDown

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 43

RIO MM Responses

Screen Change Notifications

This section presents the RIO messages received by the 3rd party device to indicate that a new
screen template must be displayed. This RIO message is typically followed by a series of RIO
messages containing text, used to populate the text fields within the screen to be displayed. For more
information on these text fields messages, see the Text Field Change Notifications section.

These screen templates are presented in the Russound MediaManagement Protocol PDF document
and can be found along with this document in the Third Party Development Toolkit. Each Screen
Template is referenced by itʼs name and designator (1a thru 1u) in the Screen Change Notification
section later in this document.

N S[s].MMScreen=”<Screen ID>”

where Screen ID is defined as:

IBridge Bay/iBridge Dock Screen Identifiers
Screen ID Screen Name Screen Designator

iPodRequestScreen iPod Request 1b

iPodPlaylistsScreen iPod Request by Playlist 1c

iPodGenresScreen iPod Request by Genre 1d

iPodArtistsScreen iPod Request by Artist 1e

iPodAlbumsScreen iPod Request by Album 1f

iPodSongsScreen iPod Request by Song Title 1g

iPodPlaylistOptionsScreen iPod Playlist Options 1h

iPodGenreOptionsScreen iPod Genre Options 1i

iPodArtistOptionsScreen iPod Artist Options 1j

iPodAlbumOptionsScreen iPod Album Options 1k

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 44

SMS3 Screen Identifiers
Screen ID Screen Name Screen Designator

SMS3RequestScreen SMS3 Request 1m

SMS3ThemesScreen SMS3 Request by Theme 1n

SMS3GenresScreen SMS3 Request by Genre 1o

SMS3ArtistsScreen SMS3 Request by Artist 1p

SMS3AlbumsScreen SMS3 Request by Album 1q

SMS3SongsScreen SMS3 Request by Song Title 1r

SMS3InternetRadioScreen SMS3 Request by Internet Radio 1s

SMS3PlayOptionsScreen SMS3 Play Artist 1t

SMS3AlbumsByArtistScreen SMS3 Play Album by Artist 1u

DMS-3.1 Screen Identifiers
Screen ID Screen Name Screen Designator

SourceMenuScreen Menu 1v

SourceInfoScreen Info 1w

SourceNowPlayingScreen Now Playing 1x

SourceTextEntryScreen Text Entry 1y

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 45

Text Field Change Notifications

This section presents the RIO notification messages that are sent by the Russound RIO system and
contain the text for each Menu Item displayed on the current screen.

N S[s].MMMenuItem[1-6].text=”<text string>”

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 46

More on the ʻkeyʼ string...
The key string is formatted as a dot-separated (ʻ.ʼ) series of strings that refer to a hierarchical set of
branches, tables and leafs.

Key strings are case insensitive.

Branches, represented as a capitalized string, serve to organize the system parameters by category.
A key string can contain multiple branches.

For example, in the WATCH SYSTEM command response,

! N System.status=”<value>”

ʻSystemʼ is a branch string.

Tables, represented by a capitalized string followed by a bracketed 1-based number, allow for
instances of items such as controllers, zones, source, etc to be referenced by index. A key string can
contain multiple tables.

For example, in the WATCH Source command response,

! N S[1].type=”<value>”

ʻS[s]ʼ is a table.

Leafs, represented by a lowercase ʻcamelʼ string and always the last string in the key string, refer to a
specific system parameter. A key string has only one leaf string.

For example, in the WATCH Zone command response,

! N C[1].Z[1].bass=”10”

ʻbassʼ is a leaf string.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 47

Using PuTTY as a RIO Client
PuTTY is a popular free implementation of Telnet and SSH for Win32 and Unix platforms. It is
possible to use PuTTY as a RIO client for testing purposes, provided it is configured correctly.

PuTTY is available here:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

When connected via IP, you may use PuTTY in ʻRawʼ mode or ʻTelnetʼ mode, depending on your
testing needs.

With either mode, specify ʻPortʼ as ʻ9621ʼ in order for PuTTY to operate as a RIO client.

If you select ʻRawʼ as your ʻConnection typeʼ, PuTTY will interoperate with a RIO compliant Russound
device without any further configuration.

If you wish to use ʻTelnetʼ mode, you must set ʻCategory/Connection/Telnet/Telnet negotiation modeʼ
to ʻPassiveʼ.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 48

Low Power Considerations

RIO devices designed with low-power standby capability will enter a standby mode after
approximately 5 to 7 minutes of inactivity (all zones and Home Theater Trigger are off), depending on
the device. Third Party RIO clients need to make special considerations to assure uninterrupted
operation.

RIO Keepalive

A RIO device with low-power standby capability will not enter standby if it receives a RIO command
before the 5 to 7 minute standby time expires. Receiving a RIO command makes the RIO device
aware that a RIO client device is present and in use.

The simplest way to keep a RIO device from entering a standby mode is to send an ʻemptyʼ RIO
command to the RIO device at a time interval that is shorter than the 5 to 7 minute timeout period. An
empty RIO command is merely a <CR> (0x0D hex) with no other characters in the message. The RIO
device discards the command (no response is sent to the RIO client), but it is sufficient for keeping
the RIO device from entering standby mode.

Waking a RIO device using Wake On LAN

RIO devices with low-power standby and IP capabilities are able to exit standby mode upon receiving
a ʻWake-On-LANʼ packet, known as a ʻmagic packetʼ, over itʼs Ethernet port. For details on Wake-On-
LAN, and formatting/generating a magic packet, go to http://en.wikipedia.org/wiki/Wake-on-LAN.

Constructing the correct magic packet requires knowledge of the IP and MAC Address of the RIO
device under control. This information is available via the RIO ʻGETʼ command. See the section RIO
Protocol Syntax - The ʻGETʼ Command for more details.

Russound I/O (RIO) Protocol
for 3rd Party Integrators

! 49

http://en.wikipedia.org/wiki/Wake-on-LAN
http://en.wikipedia.org/wiki/Wake-on-LAN

